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Skilled Labour Risk: US and International Evidence 

 

Abstract 

The paper examines whether reliance on workers in the science, technology, engineering, and 

mathematics (STEM) fields leads to increased equity risk by reducing the operating flexibility 

of firms. We construct a STEM index using detailed industry-level occupational data and show 

that firms in more STEM worker-intensive industries are subject to greater operating leverage. 

These firms also have a higher market beta and earn higher stock returns. Our results hold for 

the US and several other developed countries. The paper highlights the risk associated with 

the employment of STEM workers, which must be balanced against their contribution to 

innovation and growth. 
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1 Introduction 

Human capital is a crucial source of competitive advantage in business (Zingales, 2000).1 

The human capital of skilled workers is especially valuable, given their ability to perform 

complex, non-routine tasks that are not amenable to automation (Autor, Levy, & Murnane, 

2003). This paper focuses on skilled workers in the science, technology, engineering, and 

mathematics (STEM) fields, who are the primary contributors to research and innovation (Peri, 

Shih, & Sparber, 2015). While investment in STEM workers is critical to taking advantage of 

technological and scientific advances and the related growth opportunities, it may also subject 

firms to greater risk, a possibility that has received little attention in the literature. In this paper, 

 
1 Klaus Schwab, the founder of the World Economic Forum (WEF), remarked at the 2013 WEF meeting: 

“Capital is being superseded by creativity and the ability to innovate – and therefore by human talents – as the 

most important factors of production. Just as capital replaced manual trades during the process of industrialization, 

capital is now giving way to human talent. Talentism is the new capitalism.” (Beach, 2014). 
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we fill this gap by examining whether reliance by a firm on STEM workers affects the firm’s 

equity risk. 

Prior research shows that employee replacement costs (i.e. hiring costs) generally increase 

with the skill level of the worker (Blatter, Muehlemann, & Schenker, 2012; Dolfin, 2006; Dube, 

Freeman, & Reich, 2010; Manning, 2006; Ochoa, 2013; Wilk & Cappelli, 2003). Compared to 

less-skilled workers, skilled workers also earn higher and more rigid wages (Campbell, 1997; 

Du Caju, Fuss, & Wintr, 2012). The reluctance of firms to cut the wages of skilled workers, 

even during an economic downturn, has been associated with a desire to reduce skilled labour 

turnover, to preserve specific human capital, to avoid sending a negative signal to prospective 

recruits, and to insure skilled workers against productivity shocks (Campbell & Kamlani, 1997; 

Franz & Pfeffer, 2006; Lagakos & Ordonez, 2011). 

The presence of information asymmetry between workers and employers, coupled with 

bounded rationality, means that employment contracts are typically incomplete (Klein, 1984). 

The costs of writing and enforcing contracts are especially high when contracting with skilled 

workers due to the complex and tacit knowledge embedded in their activities (Toms, 2010a). 

The literature suggests that incomplete labour contracts often take the form of a fixed-wage 

contract that does not have explicit performance incentives but gives employees considerable 

discretion over their work (Fehr & Falk, 1999).2 To foster long-term commitment and 

investment in specific human capital, skilled labour contracts are also likely to be longer-term 

and relational in nature (Rousseau, 1990; Tsui, Pearce, Porter, & Tripoli, 1997). 

The tendency for skilled workers to be offered a fixed-wage contract and the reluctance of 

firms to dismiss or force wage cuts on them jointly suggest greater fixity of labour costs in  

skilled labour-intensive firms, and so total operating costs become smoother relative to sales. 

Consequently, residual cash flow becomes more sensitive to systematic shocks and thus riskier, 

acting as a source of operating leverage (Lev, 1974; Mandelker & Rhee, 1984; Garcia-Feijóo 

& Jorgensen, 2010). 

We expect the effect of labour-related operating leverage to be particularly manifest in firms 

reliant on STEM workers, due to the pivotal role of STEM workers in innovation and research 

and development projects. Such projects are idiosyncratic and long-term in nature and are often 

irreversible (Dixit & Pindyck, 1994; Holmstrom, 1989), making employee retention a critical 

 
2 The fixed-wage contracts can benefit the firm where the offered wage exceeds the market-clearing level and 

induces employees to reciprocate through greater work efforts (Fehr, Kirchsteiger, & Riedl, 1993; Hannan, 2005). 
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pre-condition for project success. Minimising employee turnover rates also helps to sustain 

team dynamics and the shared vision that determines innovation effectiveness (Pearce & 

Ensley, 2004), while preventing a loss of trade secrets and other sensitive knowledge to rivals 

(Li & Li, 2019). The threat to the firm’s innovative capacity and competitive advantage, and 

the difficulty of finding candidates with the right mix of skills, experience and temperament, 

can make replacing STEM workers prohibitively costly. Therefore, we expect firms that rely 

on STEM workers to pay high wages that also persist through the business cycle. 

Using detailed occupational employment and wage estimates from the US Bureau of Labor 

Statistic, we construct a STEM index that measures the annual wage share of workers in STEM 

occupations, as classified by the Occupational Information Network database, for a wide range 

of industries. A higher index means that a higher percentage of total wage costs in an industry 

is attributed to STEM relative to non-STEM workers, indicating a greater reliance on STEM 

workers by that industry and its constituent firms. 

We conduct the analysis on a sample of listed US firms from 1997 to 2018. Our main results 

are twofold: First, operating profits (wage costs) are significantly more (less) sensitive to sales 

changes for firms in more STEM worker-intensive industries. Second, both CAPM beta and 

realized returns are positively related to STEM index, after controlling for known risk factors. 

To ensure generalisability of our results, we repeat the analysis for listed firms in the other 

Group of Seven (G7) countries and thirteen European countries. We continue to find the same 

relationships in these alternative samples. Our inferences are unchanged when we estimate the 

regressions at the industry level or control for additional industry characteristics. We also show 

that the operating leverage effect becomes stronger when employee retention is more urgent, 

which further inhibits firms from labour adjustment. Overall, the results support our view that 

reliance on STEM workers creates operating leverage, particularly through its impact on labour 

costs, which increases firms’ equity risk. 

Our paper contributes to the literature that relates labour market frictions to asset pricing 

and corporate financial decisions.3 Much of the applied empirical work has focused on labour 

market institutions such as unions (Chen, Kacperczyk, & Ortiz-Molina, 2011; Chino, 2016; 

Matsa, 2010; Rosett, 2001) and labour protection laws (Agrawal & Matsa, 2013; Serfling, 

2016), and their role in generating labour frictions. By considering firms’ reliance on STEM 

 
3 Related studies have been done at both the firm level (Belo, Lin, & Bazdresch, 2014; Donangelo, Gourio, 

Kehrig, & Palacios, 2019; Gourio, 2007; Kuehn, Simutin, & Wang, 2017; Toms, 2010b) and the aggregate level 

(Danthine & Donaldson, 2002; Favilukis & Lin, 2016a, 2016b; Merz & Yashiv, 2007; Uhlig, 2007). 
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workers, we contribute to a growing stream of this literature that examines heterogeneity in 

workforce composition as another source of labour frictions (Belo, Li, Lin, & Zhao, 2017; 

Donangelo, 2014; Ghaly, Dang, & Stathopoulos, 2017; Ochoa, 2013). 

In the two studies closest to ours, Ochoa (2013) and Belo et al. (2017) examine the effects 

of skilled labour intensity on stock returns. Our paper differs in several important respects. 

First, Ochoa (2013) and Belo et al. (2017) classify skilled workers broadly as workers with a 

relatively high level of education and experience, while we focus on a specific group of skilled 

workers who typically engage in research and innovation. Given the significant value-creating 

potential of these activities (Chauvin & Hirschey, 1993; Simeth & Cincera, 2016), we expect 

our STEM index to more precisely capture the importance of human capital. Also, given that 

only a few managerial roles (conventionally treated as high-skilled) are classified as STEM 

occupations, our STEM index is a more conservative measure of labour skill, with the 

advantage that our analysis is less susceptible to confounding factors such as managerial rent-

seeking or excess bureaucracy. Second, we provide direct empirical evidence of operating 

leverage as an essential mechanism behind the higher risk of STEM worker-intensive firms. 

Third, we show that both the risk effect of reliance on STEM workers, and the economic 

mechanism behind it, hold in a range of developed markets, thus providing broader and more 

detailed evidence of skilled labour risk. 

Our paper is also related to the literature on the value and risk implications of intangible 

investments such as R&D (Chambers, Jennings, & Thompson, 2002; Chan, Lakonishok, & 

Sougiannis, 2001; De Andrés-Alonso, Azofra-Palenzuela, & De La Fuente-Herrero, 2006) and 

patenting activities (Griliches, 1981; Hirshleifer, Hsu, & Li, 2013; Mazzucato & Tancioni, 

2012). We depart by focusing instead on the main enablers of such investments, i.e. STEM 

workers. Crucially, we show that STEM workers constitute a type of risky asset that reduces 

firms’ operating flexibility in a similar way to illiquid physical capital (Ortiz-Molina and 

Phillips, 2014; Tüzel, 2010). 

The rest of the paper is organized as follows. Section 2 describes the data, variables, and 

sample selection. Section 3 presents the main results. Sections 4 and 5 provide additional 

results and robustness checks. Section 6 concludes. 
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2 Data 

2.1 STEM Index 

To quantify reliance on STEM workers, we construct a STEM index that measures the 

annual percentage of total wage costs in an industry due to workers in STEM occupations, as 

classified by the Occupational Information Network (O*Net) program.4 A higher index means 

that a larger share of the industry’s annual wage bill is attributed to STEM workers, thereby 

indicating a greater reliance on STEM workers by that industry and its firms. We focus on the 

wage, rather than employment, share of STEM workers to account for the fact that the same 

STEM occupation can be valued differently between industries.5 

To construct the STEM index, we obtain industry-level occupational employment and wage 

estimates from the Occupational Employment Statistics program of the US Bureau of Labor 

Statistics (BLS-OES) from 1997 to 2019.6 The BLS-OES classified industries by three-digit 

Standard Industry Code (SIC) prior to 2002, and by four-digit North American Industry 

Classification Scheme (NAICS) from 2002 onwards. To ensure consistency in the industry 

classification during our sample period, we convert the STEM index during 1997-2001 to be 

based on four-digit NAICS.7 We set the STEM index to missing for miscellaneous or non-

 
4 See https://www.onetonline.org/find/stem. The O*Net program compiles detailed occupational information 

and is developed under the sponsorship of the US Department of Labor. As of October 2020, it listed a total of 

308 STEM occupations defined by eight-digit Standard Occupation Code (SOC). These are grouped into five 

categories: “Managerial” (e.g. computer and information systems managers), “Postsecondary Teaching” (e.g. 

mathematical science teachers), “Research, Development, Design, and Practitioners” (e.g. web developers), 

“Sales” (e.g. solar sales representatives and assessors), and “Technologists and Technicians” (e.g. robotics 

technicians). To merge with occupation data from the US Bureau of Labor Statistics, we collapse the 308 STEM 

occupations on the O*Net list into 184 based on the first six digits of SOC codes. 

5 According to the May 2017 edition of the Occupational Employment Statistics surveys, the mean annual wage 

of computer network architects (SOC Code 15-1143) is $54,040 in the Building Equipment Contractors industry, 

but $120,550 in the Software Publishers industry. As another example, the mean annual wage of electrical 

engineers (SOC Code 17-2071) is $76,910 in the Furniture and Related Product Manufacturing industry but 

$112,730 in the Motion Picture and Video industry. 

6 See https://www.bls.gov/oes/tables.htm. The BLS-OES conducts semi-annual surveys of nonfarm 

establishments to produce employment and wage estimates for about 800 detailed occupations at the national, 

state, metropolitan and nonmetropolitan area, and industry level. For this paper, we use industry-level data from 

the 1997-2019 OES surveys. We choose 1997 as the starting point for data collection because prior to 1997, not 

all industries were surveyed each year and occupational wage estimates were unavailable. As we use the May 

edition of OES surveys from 2003 to 2019, we lag the STEM index estimated during that period by one year. 

7 We note that although three-digit SIC code is roughly equivalent to four-digit NAICS code, there remains 

discrepancy between the two schemes where one SIC industry can correspond to multiple NAICS industries, and 

vice versa. For instance, SIC 175 (Carpentry and Floor Work) is linked to both NAICS 2381 (Foundation, 

Structure, and Building Exterior Contractors) and NAICS 2383 (Building Finishing Contractors); NAICS 3141 

(Textile Furnishing Mills) is linked to both SIC 227 (Carpets and Rugs) and SIC 571 (Home Furniture and 
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classifiable industries, i.e. those with a NAICS code ending in “9”, because firms in these 

industries are unlikely to share a common labour force (Donangelo, 2014). 

In total, we can estimate the STEM index for 269 four-digit NAICS industries, which cover 

the whole spectrum of private-sector economic activity. Table 1 shows the 15 most and 15 least 

STEM worker-intensive industries based on their average STEM index during 1997-2018. We 

find that industries in the healthcare, information, and professional service sectors are heavily 

reliant on STEM workers, who account for half or more of the industry’s total wage costs. On 

the other hand, industries in the retail and hospitality sectors rely much less on STEM workers, 

who account for less than one percent of the industry’s total wage expense. 

[Insert Table 1 here] 

2.2 Sample Selection 

Our baseline sample consists of all US non-financial firms with common stock listed on 

NYSE, AMEX, and NASDAQ between 1997 and 2018. Financial statement data are from 

Standard and Poor’s Compustat annual industrial files. Stock return data are from the CRSP 

monthly stock files. Firm-year observations that cannot be matched to the BLS-OES data are 

excluded. We also require firms to have non-missing monthly returns during the fiscal year and 

non-missing measures of size, market-to-book ratio, leverage, and CAPM beta at the fiscal 

year-end. Following Pástor & Veronesi (2003), we remove observations with a market value 

of equity below $10 million and a market-to-book ratio greater than 100 or less than 0.01. The 

selection process results in a final sample of 46,977 observations during 1997-2018, 

corresponding to 6,146 firms across 211 four-digit NAICS industries. 

To ensure that our inferences can be generalised beyond the US, we repeat the main analysis 

for two international samples. The first consists of publicly listed firms in the other G7 

countries, i.e. Canada, France, Germany, Italy, Japan, and the United Kingdom. The second 

consists of publicly listed firms in thirteen European countries with a relatively developed 

capital market: Austria, Belgium, Denmark, Finland, France, Germany, Italy, the Netherlands, 

Norway, Spain, Sweden, Switzerland, and the United Kingdom (Dutordoir et al., 2014; Haque 

& Jones, 2020). For the non-US firms, we download accounting data from Compustat Global, 

 
Furnishing Stores). To avoid distorting the data too much, we choose to reclassify the 1997-2001 index estimates 

rather than the 2002-2018 index estimates. 
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and construct monthly returns using daily prices and price adjustment factors from Compustat 

Securities Daily (Belo et al., 2017).8 After applying the selection criteria for the US sample, 

we obtain 72,802 observations for the G6 sample, and 35,608 observations for the European 

sample. Table 2 reports the year and sectoral distribution of firms in the US and international 

samples.9 

[Insert Table 2 here] 

2.3 Descriptive Statistics 

Each year, firms are sorted into three portfolios based on STEM index. For each of the three 

STEM portfolios, we calculate the means of several firm characteristics which are then 

averaged during our sample period. Table 3 reports the results based on the US sample (panel 

A), the G6 sample (panel B), and the European sample (panel C).10  We observe, first, that the 

average STEM index is higher across the STEM portfolios in the US sample than in the two 

international ones, suggesting that the US has a particularly technology-intensive economy 

compared to its counterparts in the developed world. 

The table shows that the average high-STEM firm is smaller and less leveraged than the 

average low-STEM firm. The lower debt in high-STEM firms is consistent with the idea that 

these firms may be less financially flexible, which we argue is due to their significant labour 

commitments, and so are reluctant to take on more debt (Graham & Harvey, 2001). The positive 

relation between STEM index and both market-to-book and R&D suggests that high-STEM 

firms have greater growth opportunities. Compared to low-STEM firms, high-STEM firms are 

less profitable, invest less in fixed assets, and are more focused in their activities.11 More 

 
8 For Canadian firms, we obtain monthly stock prices and the price adjustment factors from Compustat 

Securities Monthly. 

9 We aggregate the firms into 16 sectors by their two-digit NAICS codes: Agriculture, Forestry, Fishing, and 

Hunting (NAICS 11), Mining (NAICS 21), Utilities (NAICS 22), Construction (NAICS 23), Manufacturing 

(NAICS 31-33), Wholesale Trade (NAICS 42), Retail Trade (NAICS 44-45), Transportation and Warehousing 

(NAICS 48-49), Information (NAICS 51), Professional, Scientific, and Technical Services (NAICS 54), 

Administrative and Support and Waste Management and Remediation Services (NAICS 56), Educational Services 

(NAICS 61), Health Care and Social Assistance (NAICS 62), Arts, Entertainment, and Recreation (NAICS 71), 

Accommodation and Food Services (NAICS 72), and Other Services (NAICS 81). 

10 To ensure consistency across our samples, we convert all accounting and financial data of non-US firms into 

US dollars before constructing the variables used in this study. Monthly and daily exchange rate data are 

downloaded from the I/B/E/S database. 

11 We obtain segment data for US firms from the Compustat Historical Segments database. The same data is 

not available for non-US firms. 
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importantly, market beta is shown to increase across the STEM terciles, suggesting that the 

stocks of STEM worker-intensive firms are riskier due to higher exposure to systematic risk. 

We examine this relationship in more detail in the next section. 

[Insert Table 3 here] 

3 Main Results 

3.1 Reliance on STEM Workers and Operating Leverage 

To test our assumption that reliance on STEM workers generates operating leverage by 

increasing the degree of fixity in labour costs, we estimate the following two regressions: 

 ΔWAGEi,j,t = α0 + α1ΔSALESi,j,t + α2STEMj,t + α3ΔSALESi,j,t×STEMj,t + εi,j,t (1) 

 ΔPROFITi,j,t = β0 + β1ΔSALESi,j,t + β2STEMj,t + β3ΔSALESi,j,t×STEMj,t + ei,j,t (2) 

Where i, j, and t index firm, industry, and year, respectively. Δ denotes the first difference of 

the natural logarithm, i.e. growth rate. STEM is the standardized STEM index. WAGE is annual 

wage costs.12 PROFIT is annual operating income after depreciation. SALES is annual sales. ε 

and e are the error terms. Both equations include year and sector fixed effects to control for 

unobserved macroeconomic and sectoral shocks. For the international analysis, we additionally 

include country fixed effects to partial out country-specific factors. 

In equation (1), our test of the effects of STEM on labour cost fixity centres on the sign of 

α3. If, as we hypothesize, an increased reliance on STEM workers constrains the firm’s ability 

to adjust labour costs in response to external demand shocks, as represented by sales changes, 

the model should yield a negative coefficient for the interaction term, i.e. α3<0. To assess 

whether STEM employment increases the upward or downward inflexibility, or both, of labour 

costs, we also estimate equation (1) for firms with a positive change in sales (ΔSALES>0) and 

firms with a negative change in sales (ΔSALES<0). 

 
12 For US firms, annual wage costs are represented by Compustat item XLR. As XLR includes both wages and 

benefits, we multiply XLR by the ratio of wages to total compensation in the firm’s three-digit NAICS industry – 

based on the National Income and Product Accounts (NIPA) data, as available from the US Bureau of Economic 

Analysis – when Compustat footnote XLR_FN does not show “XB” (which indicates exclusion of benefits from 

XLR). For non-US firms, wage costs are represented by Compustat Global item XSTFWS, which refers 

specifically to the wage component of employee compensation. Where XSTFWS is missing, we multiply XLR 

by the median industry ratio of XSTFWS to XLR during that year in the firm’s country. 
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In equation (2), our test of the effects of STEM on operating leverage centres on the sign of 

β3. If, as we hypothesize, increased reliance on STEM workers leads to riskier cash flows that 

are more sensitive to external demand shocks, the model should yield a positive coefficient for 

the interaction term, i.e. β3>0. As in the wage sensitivity analysis, we repeat the estimation of 

equation (2) for two subsamples based on whether the firm had a positive or negative sales 

change in the previous year. 

Table 4 reports the estimation results of equation (1) based on the US sample (panel A) and 

the two international samples (panels B and C). The unconditional effects in the first column 

indicate the general stickiness of wages, where a given magnitude of change in sales predicts 

a lower magnitude of change in wages, as reflected by a ΔSALES coefficient below one. The 

degree of wage stickiness is more pronounced in the US than in other developed countries: a 

10% change in sales is associated with a roughly 4% change in wages for the US firms, while 

the corresponding figure is 6% for the G6 and European firms. The negative and significant 

coefficients on the interaction term in the second column suggest that, consistent with our 

expectations, wages become even less sensitive to sales changes – and thus stickier – as the 

firm relies more heavily on STEM workers. Specifically, a one-standard-deviation increase in 

STEM index reduces the base wage sensitivity among US firms (0.440), G6 firms (0.611), and 

European firms (0.598), by 25.7%, 18.8%, and 15.7%, respectively. 

The last two columns in table 4 show the interaction effects for subsamples based on whether 

the firm’s sales increased or decreased during the previous year. In both cases, the coefficient 

on the interaction term remains negative and mostly significant across different samples. 

Notably, the results are more pronounced for firms with negative sales changes than for firms 

with positive sales changes, suggesting that reliance on STEM workers contributes more to 

downward wage inflexibility (i.e. after a negative demand shock) than to upward wage 

inflexibility (i.e. after a positive demand shock). 

[Insert Table 4 here] 

Table 5 reports the estimation results of equation (2) based on the US sample (panel A) and 

the two international samples (panels B and C). The unconditional effects in the first column 

suggest that compared to wages, profits react strongly to sales changes, as reflected by a 

ΔSALES coefficient above one. The positive and significant coefficients on the interaction term 

in the second column suggest that, consistent with our expectations, profits become even more 
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sensitive to sales changes – and thus more volatile – as the firm relies more heavily on STEM 

workers. Specifically, a one-standard-deviation increase in STEM index is associated with an 

increase in the base profit sensitivity among US firms (1.642), G6 firms (1.641), and European 

firms (1.360) by 7.1%, 3.9%, and 7.2%, respectively. 

The last two columns in table 5 show the interaction effects for subsamples based on whether 

the firm’s sales increased or decreased during the previous year. In both scenarios, the 

interaction term continues to have a positive and significant coefficient across the alternative 

samples. As in the wage sensitivity analysis, we find that the moderating effect of STEM index 

is more pronounced for firms with negative sales changes than for firms with positive sales 

changes – in this case by a factor of more than 2. The finding suggests that reliance on STEM 

workers amplifies both the downside risk and upside potential of firms, with the former effect 

being more dominant. 

Taken together, the results in tables 4 and 5 support our view that employment of STEM 

workers leads to riskier cash flows by reducing the operating flexibility of firms, particularly 

through its impact on labour costs. The wage stickiness of STEM worker-intensive firms, and 

the associated increase in their profit sensitivity, is stronger during a negative demand shock 

than during a positive one. This asymmetry may reflect a higher cost of downsizing and/or pay 

cuts in periods of contraction, compared to hiring and/or pay rises in periods of growth, 

especially for firms reliant on STEM workers (Goux, Maurin, & Pauchet, 2001). In the next 

section, we examine whether the increased operating leverage at STEM worker-intensive firms 

translates into higher equity risk. 

[Insert Table 5 here] 

3.2 Reliance on STEM Workers and Equity Risk 

To determine whether reliance on STEM workers increases equity risk, we use two 

complementary approaches. First, we examine the relationship between STEM index and 

firms’ market beta. Second, we examine the relationship between STEM index and firms’ 

future stock returns. 

Having established in the previous section that operating leverage increases with firms’ 

reliance on STEM workers, we expect STEM worker-intensive firms to therefore have a greater 

exposure to systematic risk. To verify this, we estimate the following regression model: 
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BETAi,j,t = β0 + β1STEMj,t + β2SIZEi,j,t + β3FINLEVi,j,t + β4MBi,j,t + β5ROAi,j,t + β6RDi,j,t 

+ β7RDMISSINGi,j,t + β8CAPEXi,j,t + β9BSEGi,j,t + β10SALEHHIi,j,t + εi,j,t (3) 

Where i, j, and t index firm, industry, and year, respectively. BETA is market beta from the 

CAPM model, estimated using at least 24 and up to 60 months of past returns. STEM is the 

standardized STEM index. SIZE is the natural logarithm of market value of equity at the fiscal 

year-end. FINLEV is the ratio of total debt to the sum of total debt and market value of equity. 

MB is the market-to-book value of equity ratio. ROA is the ratio of income before extraordinary 

items to total assets. RD is the ratio of R&D expense to total assets, with missing R&D expense 

set to zero. RDMISSING is a dummy variable equal to 1 if the R&D expense is missing, and 0 

otherwise. CAPEX is capital expenditure less the sale of property, plant, and equipment, 

divided by total assets. For the US analysis, we also control for firm focus using the natural 

logarithm of the number of business segments (BSEG), and a Herfindahl-Hirschman index of 

segment sales (SALEHHI) (Low, 2009). ε is the error term. 

The model includes year, sector, and country fixed effects. To reduce the influence of 

outliers, all firm-level variables (except BSEG and SALEHHI) are winsorized at the 0.5% and 

99% levels. Standard errors are clustered at the four-digit NAICS industry level to address the 

concern that residuals may be correlated across firms within the same industry. 

Table 6 reports estimates of the systematic risk regression in equation (3). Consistent with 

our expectations, the table shows a positive and significant relationship between STEM index 

and market beta, after controlling for several firm characteristics. The results are relatively 

pronounced for the US firms, with the increase in market beta associated with a one-standard-

deviation increase in STEM index about 1.7 times that for the G6 and European firms. As for 

the effects of control variables, we find that market beta increases with size, leverage, and R&D 

intensity, and decreases with growth, profitability, and firm diversification. 

[Insert Table 6 here] 

Combined with results in the previous section, the results in table 6 support our proposition 

that an increased reliance on STEM workers, by generating operating leverage, amplifies the 

firm’s systematic risk exposure. As an extension, we consider whether future returns are also 

higher for firms that rely more heavily on STEM workers. The rationale is that investors, 
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recognising the higher systematic risk of STEM worker-intensive firms, will require a higher 

return to invest in their stock. To verify this, we estimate the following regression model: 

 

RETURNi,j,t+1 = β0 + β1STEMj,t + β2SIZEi,j,t + β3FINLEVi,j,t + β4MBi,j,t + β5BETAi,j,t + 

β6LAGRETi,j,t + εi,j,t (4) 

Where i, j, and t index firm, industry, and year, respectively. RETURN is the realized annual 

return from July in year t+1 to June in year t+2. STEM, SIZE, FINLEV, MB, and BETA are as 

previously defined.  LAGRET is the lagged eleven-month return from July in year t to May in 

year t+1 (Carhart, 1997). The model includes year, sector, and country fixed effects. As in the 

systematic risk regression, we winsorize all firm-level variables at the top and bottom 0.5% 

and cluster robust standard errors at the four-digit NAICS industry level. 

Table 7 reports estimates of the return predictability regression in equation (4), which show 

that firms’ reliance on STEM workers has a positive and significant effect on future returns. 

The results corroborate our earlier findings by indicating that investors demand a higher return 

on the stocks of STEM worker-intensive firms to compensate for greater systematic risk. The 

economic magnitude of our results is also significant: all else equal, a one-standard-deviation 

increase in STEM index leads to an increase in future returns by 1.9% for US firms, and by 

1.0% and 1.3% for the G6 and European firms, respectively. 

[Insert Table 7 here] 

As a robustness check, we rerun both the systematic risk regression and return predictability 

regression at the industry level, by converting all firm-level variables – BETA, SIZE, FINLEV, 

MB, ROA, RD, CAPEX, BSEG, and SALEHHI in equation (3), and RETURN, SIZE, FINLEV, 

MB, BETA, LAGRET in equation (4) – into four-digit NAICS industry averages, in line with 

the definition of STEM index.13 Table 8 reports the results of industry-level regressions for the 

US sample and the two international samples. We find that STEM index continues to have a 

positive and significant effect on both market beta and realized returns. In particular, the results 

suggest that a one-standard-deviation increase in STEM index is associated with an increase in 

industry-level realized returns by between 1.2% and 2.2%. 

 
13 We exclude RDMISSING in the industry-level estimation of equation (4). 
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[Insert Table 8 here] 

Overall, the evidence presented in this section reinforces our conclusion that investment in 

a highly skilled workforce, especially one centred around STEM workers, create risk for firms. 

As the significant cost commitment associated with STEM workers inhibits firms from 

adjusting to the economic conditions, shareholder cash flow is less insulated from systematic 

(undiversifiable) demand shocks, which implies a higher risk premium on the firm’s stock. The 

findings in table 6 and table 7 are jointly supportive of this inference. 

4 Additional Results 

This section presents results from several additional tests. First, we examine the relationship 

between STEM index and a direct measure of labour-related operating leverage for detailed 

manufacturing industries. Second, we re-estimate the main regressions by controlling for 

additional industry characteristics. Third, we examine cross-sectional variation in the operating 

leverage effect by comparing the baseline results across pairs of subsamples formed according 

to the relative urgency of employee retention. 

4.1 A Direct Measure of Labour-Related Operating Leverage 

A potential limitation to our wage sensitivity analysis in Section 3.1 is the scarcity of firm-

level wage data, as reflected by the reduced sample sizes.14 To strengthen our inferences while 

circumventing the data constraints, we turn to the Manufacturing Industry Database of the 

National Bureau of Economic Research and the Center for Economic Studies (NBER-CES) 

(Bartelsman & Guay, 1996),15 which provides detailed production data for the full spectrum of 

manufacturing industries (classified at the six-digit NAICS level) from 1958 through 2011. 

Specifically, we construct a direct measure of labour-related operating leverage (LOPLEV) as 

the slope coefficient from a time-series regression in which the natural logarithm of an 

industry’s total payroll costs is regressed on the natural logarithm of its shipment value or its 

total factor productivity (TFP),16 using a 10-, 20-, 30-, and 40-year rolling window. A higher 

 
14 We note, however, that even after imposing the data restrictions, firms in our three alternative samples remain 

distributed across a wide range of industries. 

15 See https://www.nber.org/research/data/nber-ces-manufacturing-industry-database 

16 For an industry’s TFP, we use both the four-factor TFP index (“TFP4”) and five-factor TFP index (“TFP5”) 

as reported in the NBER-CES database. The four factors in TFP4 include capital, production worker hours, non-

https://www.nber.org/research/data/nber-ces-manufacturing-industry-database
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(lower) value of LOPLEV indicates that wage costs in that industry are more (less) responsive 

to productivity or demand shocks. 

To examine whether reliance on STEM workers affects the degree of wage sensitivity, we 

match the STEM index data with the NBER-CES data and sort the manufacturing industries 

into five portfolios each year based on their STEM index. For each of the STEM quintiles, we 

calculate the mean value of LOPLEV, which is then averaged over the period from 1997 to 

2011. Table 9 reports the results of portfolio sorts, which indicate a generally increasing pattern 

of LOPLEV across the STEM portfolios. The t-tests for differences in means show that in all 

specifications, the mean LOPLEV is significantly higher for the most STEM worker-intensive 

manufacturing industries than for the least STEM-worker intensive industries. These findings 

complement the interaction regression results in table 4 and further indicate that reliance on 

STEM workers induces operating leverage by increasing the fixity of labour costs. 

[Insert Table 9 here] 

4.2 Omitted Industry Characteristics 

To isolate the effect of STEM index in our regression analysis, we control for several firm-

level factors that may affect systematic risk or stock returns. However, it is possible that both 

STEM index and the dependent variable are correlated with the same industry characteristics, 

making the observed relationships spurious. To reduce the likelihood of omitted variable bias, 

we estimate a less parsimonious model by controlling for additional industry characteristics. 

Following previous studies (e.g. Chen, Kacperczyk, & Ortiz-Molina, 2012), we address 

potential industry life-cycle effects by controlling for industry age (INDAGE), which is the log 

age of the oldest firm (based on the first appearance on CRSP) in an industry; the industry 

capital-to-labour ratio (INDKL); the median one-year asset growth rate in an industry 

(INDATGR); the median return-on-assets in an industry (INDROA); and industry sales 

concentration (INDCONC).17 We also control for two industry-level labour variables that have 

been associated with firms-level stock returns: unionization rate (UNION), which is the share 

of employed workers in an industry covered by a collective bargaining agreement (Chen et al., 

 
production worker hours, and materials. The five factors in TFP5 include capital, production worker hours, non-

production worker hours, energy materials, and non-energy materials (see Becker, Gray, & Marvakov, 2016). 

17 Hou & Robinson (2006) show that firms in more concentrated (i.e. less competitive) industries have lower 

returns, which they argue is due to the lower innovation risk or distress risk faced by these firms. 
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2011);18 and labour mobility (MOBILE), which is the relative flexibility of an industry’s 

workers to switch industries (Donangelo, 2014).19 

Table 10 reports the estimation results of equations (3) and (4) with additional controls. Two 

findings are of note: First, the positive effects of STEM index remain statistically significant 

across all columns, indicating the robustness of our main results. Second, our measure of STEM 

index outperforms other industry-level variables that prior research suggests have implications 

for the risk and returns of firms. In columns (3) and (6) where all the additional controls are 

included, the adjusted R-squared increases from 17.5% and 6.8% (in baseline models) to 18.4% 

and 7.2%, suggesting that the industry characteristics above capture relevant variation in both 

systematic risk and stock returns, albeit marginally. In sum, the results in table 10 significantly 

reduce the likelihood that our main results are driven by omitted industry-level factors. 

[Insert Table 10 here] 

4.3 Subsample Analyses 

The central argument of this paper is that reliance on STEM workers increases the degree 

of labour cost fixity and thus operating leverage, which exposes the firm to greater systematic 

risk. If this argument is correct, the positive effects of STEM index on market beta and stock 

returns should become stronger when the firm is further limited in its ability to adjust labour 

costs. As a final robustness check, we test this possibility by repeating the main analysis for 

four pairs of subsamples of US firms based on the urgency of employee retention.  

The four partitioning variables are: First, the stock of R&D capital, which is the firm’s five-

year cumulative R&D expense scaled by total assets (Chan et al., 2001); second, a dummy for 

whether the firm applied for at least one patent (which was subsequently granted) during the 

past three years, using the data from Kogan, Papanikolaou, Seru, & Stoffman (2017);20 third, 

the degree of labour market competition, defined as one minus a Herfindahl-Hirschman index 

of employee concentration in the firm’s industry;21 and fourth, a dummy for whether contingent 

 
18 We obtain unionization rate data for three-digit Census Industry Classification (CIC) – roughly equivalent 

to four-digit NAICS – industries from the Union Membership and Coverage Database (www.unionstats.com). 

19 Following Donangelo (2014), we estimate labour mobility as the degree of inter-industry concentration of 

occupations, weighted by their associated wage costs and aggregated by industry, using also the BLS-OES data. 

20 We download the patent data for US firms during 1926-2019 from the website of Professor Noah Stoffman 

(https://host.kelley.iu.edu/nstoffma/). 

21 Kim & Ouimet (2014) construct a similar measure and use it as proxy for worker bargaining power.  

https://host.kelley.iu.edu/nstoffma/
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workers represent a significant share of the firm’s workforce.22 We expect firms with higher 

R&D investment and recent innovation output to put more emphasis on preserving human 

capital (Wang, He, & Mahoney, 2009). Likewise, firms in industries with a more dispersed 

workforce – which indicates lower exit costs for workers – and firms with predominantly full-

time permanent workers may perceive employee retention as relatively important (Leana & 

van Buren, 1997). Consequently, these firms may be less willing to engage in layoffs or pay 

cuts, which further reduces the flexibility of their labour costs. 

Table 11 reports the subsample results for the wage and profit sensitivity regressions in 

Section 3.1. Supporting our conjecture, panel A shows that reliance on STEM workers reduces 

the responsiveness of wages to sales mainly for research- and innovation-intensive firms, firms 

in industries whose workforce is more thinly spread, and firms with a less transient workforce, 

as reflected by a more negative coefficient on the interaction terms. Correspondingly, panel B 

shows that profit volatility is also exacerbated by reliance on STEM workers, mainly for the 

above subsamples of firms, as reflected by a more positive coefficient on the interaction terms. 

[Insert Table 11 here] 

To complete our analysis, we also compare the coefficient estimates of STEM index from 

the systematic risk and return predictability regressions in Section 3.2 across the four pairs of 

subsamples. Consistent with the inferences from table 11, the results in table 12 shows that 

reliance on STEM workers has a more positive effect of market beta and realized returns when 

employee retention is more urgent for the firm as a result of internal knowledge investment or 

external labour market conditions. 

[Insert Table 12 here] 

Taken together, the evidence presented in this section further reinforces operating leverage 

due to labour as an essential mechanism through which reliance on STEM workers contributes 

to higher equity risk. 

 
22 Specifically, the dummy variable is set to 1 if the Compustat employee footnote shows “IE”, which indicates 

that at least 10% of the firm’s workforce are part-time or seasonal workers, and 0 otherwise (Hanka, 1998). 
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5 Conclusion 

The transition towards a knowledge economy has intensified the demand for highly skilled 

workers. STEM workers, in particular, are at the centre of the global competition for talent due 

to their ability to leverage advanced technology both effectively and productively. While the 

contribution of STEM workers to high value-added activities such as R&D and innovation is 

often highlighted, little research has analyzed the risk that investment in STEM workers may 

create for individual firms. 

In this paper, we argue that reliance on STEM workers reduces the operating flexibility of 

firms by increasing the stickiness of operating costs, particularly their labour component. The 

operating leverage thus created increases the volatility of cash flow as it becomes more exposed 

to systematic risk. Our empirical evidence supports the operating leverage effect by showing, 

first, that wages are stickier for firms in more STEM worker-intensive industries, whose profits 

also react more strongly to external demand shocks; and second, both market beta and future 

stock returns are positively related to firms’ reliance on STEM workers. These results hold for 

firms in the US, the other G7 countries, and several European countries. 

Our paper highlights increased equity risk as a cost that firms must contend with as they 

seek to benefit from investment in STEM workers. Besides optimizing the return on intangible 

investments that involve STEM workers, e.g. by improving organizational design (Dougherty, 

2006) or employee welfare schemes (Mao & Weathers, 2019), firms may consider adjusting 

the balance between the fixed and variable components of employee compensation packages 

(Allen & Thompson, 2019), using skilled contingent labour (Bidwell, 2009), or reducing debt 

and other fixed charges, such that flexibility is restored in their operating structure.
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Table 1 

The Most and Least STEM Worker-Intensive Industries 

Rank NAICS Industry Title STEM 

Most STEM Worker-Intensive industries 

1 6221 General Medical and Surgical Hospitals 71.12 

2 6211 Offices of Physicians 69.85 

3 6223 Specialty (except Psychiatric and Substance Abuse) Hospitals 68.59 

4 5415 Computer Systems Design and Related Services 66.87 

5 5112 Software Publishers 63.45 

6 3341 Computer and Peripheral Equipment Manufacturing 62.47 

7 5417 Scientific Research and Development Services 61.23 

8 5413 Architectural, Engineering, and Related Services 58.45 

9 6214 Outpatient Care Centers 57.64 

10 6222 Psychiatric and Substance Abuse Hospitals 56.94 

11 6212 Offices of Dentists 56.57 

12 6213 Offices of Other Health Practitioners 56.22 

13 6215 Medical and Diagnostic Laboratories 55.09 

14 5181 Internet Service Providers and Web Search Portals 50.33 

15 5182 Data Processing, Hosting, and Related Services 48.85 

    

Least STEM Worker-Intensive industries 

1 4855 Charter Bus Industry 0.02 

2 7222 Limited-Service Eating Places 0.03 

3 7224 Drinking Places (Alcoholic Beverages) 0.03 

4 7221 Full-Service Restaurants 0.04 

5 4852 Interurban and Rural Bus Transportation 0.10 

6 8111 Automotive Repair and Maintenance 0.12 

7 7212 Recreational Vehicle Parks and Recreational Camps 0.21 

8 4412 Other Motor Vehicle Dealers 0.23 

9 4453 Beer, Wine, and Liquor Stores 0.24 

10 4411 Automobile Dealers 0.25 

11 4481 Clothing Stores 0.27 

12 2383 Building Finishing Contractors 0.27 

13 4922 Local Messengers and Local Delivery 0.30 

14 4533 Used Merchandise Stores 0.33 

15 8122 Death Care Services 0.36 

This table lists the 15 most and 15 least STEM worker-intensive industries, out of a total of 269 

industries, based on their average STEM index during the period 1997-2018. STEM index measures 

the annual wage share of STEM workers in an industry. Industries are defined by four-digit NAICS 

codes. 
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Table 2 

Sample Distribution 

  US  G6  Europe 

Panel A: Year distribution 

1997  2,962  1,766  615 

1998  2,990  1,825  668 

1999  2,834  2,038  708 

2000  2,571  2,482  725 

2001  2,493  2,942  1,366 

2002  2,492  2,967  1,380 

2003  2,508  3,121  1,466 

2004  2,475  3,492  1,820 

2005  2,360  3,828  2,093 

2006  2,279  3,956  2,124 

2007  2,067  3,801  2,000 

2008  1,899  3,550  1,778 

2009  1,923  3,522  1,771 

2010  1,880  3,708  1,906 

2011  1,786  3,818  1,986 

2012  1,741  3,925  2,050 

2013  1,747  3,884  2,034 

2014  1,714  3,835  1,946 

2015  1,638  3,748  1,873 

2016  1,603  3,548  1,782 

2017  1,458  3,539  1,778 

2018  1,557  3,507  1,739 

Total  46,977  72,802  35,608 

Panel B: Sectoral distribution 

Agriculture  0  36  23 

Mining  2,150  4,680  1,306 

Utilities  1,936  1,753  1,371 

Construction  660  2,776  768 

Manufacturing  23,720  33,346  16,063 

Wholesale  1,678  5,307  1,466 

Retail  2,902  5,236  1,882 

Transportation  1,228  2,967  1,542 

Information  5,926  6,540  4,391 

Professional Services  2,680  5,639  4,195 

Administrative Services  1,060  1,202  792 

Education  284  356  43 

Health  1,140  360  241 

Arts and Entertainment  292  659  620 

Accommodation and Food Services  1,133  1,655  782 

Other Services  188  290  123 

The table reports the year and sectoral distribution of sample firms in the US, G7 countries except US 

(Canada, France, Germany, Italy, Japan, and the United Kingdom), and thirteen European countries 

(Austria, Belgium, Denmark, Finland, France, Germany, Italy, the Netherlands, Norway, Spain, 

Sweden, Switzerland, and the United Kingdom). The sample covers the period from 1997 to 2018. 
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Table 3 

STEM Index and Firm Characteristics 

Panel A: US Sample 

Portfolio STEM SIZE ASSET SALE FINLEV MB ROA RD CAPEX BSEG SALEHHI BETA 

1 0.05 6.19 6.44 6.52 0.25 2.59 0.03 0.00 0.06 0.71 0.76 1.07 

2 0.27 6.20 6.07 5.49 0.18 3.61 -0.06 0.08 0.05 0.61 0.79 1.22 

3 0.55 6.04 5.74 5.46 0.11 3.74 -0.05 0.10 0.04 0.53 0.80 1.48 

3-1  -0.15 -0.70*** -1.07*** -0.14*** 1.15*** -0.07*** 0.09*** -0.02*** -0.18*** 0.04*** 0.41*** 

[t]  -0.86 -4.21 -6.91 -14.71 5.75 -7.18 24.80 -4.78 -5.17 3.88 5.08 

Panel B: G6 Sample 

Portfolio STEM SIZE ASSET SALE FINLEV MB ROA RD CAPEX BSEG SALEHHI BETA 

1 0.03 5.37 6.19 6.23 0.33 1.61 0.02 0.00 0.04 - - 0.69 

2 0.14 5.53 6.28 6.08 0.31 1.57 0.01 0.01 0.05 - - 0.92 

3 0.45 5.29 5.58 5.26 0.20 2.36 -0.01 0.04 0.04 - - 1.05 

3-1 0.43 -0.08 -0.60*** -0.97*** -0.13*** 0.75*** -0.03*** 0.04*** 0.00   0.36*** 

[t]  -1.08 -9.43 -12.48 -9.31 6.70 -10.88 29.37 0.65   8.70 

Panel C: European Sample 

Portfolio STEM SIZE ASSET SALE FINLEV MB ROA RD CAPEX BSEG SALEHHI BETA 

1 0.03 5.70 6.28 6.18 0.30 2.08 0.03 0.00 0.05 - - 0.77 

2 0.16 5.83 6.25 6.06 0.26 2.28 0.02 0.02 0.05 - - 0.84 

3 0.50 5.27 5.28 5.03 0.16 3.18 -0.00 0.06 0.04 - - 0.98 

3-1  -0.44*** -1.00*** -1.15*** -0.14*** 1.10*** -0.03*** 0.06*** -0.02***   0.21*** 

[t]  -4.69 -10.64 -10.60 -11.58 6.51 -6.48 15.89 -4.27   2.84 

This table reports the time-series averages of mean characteristics for three portfolios sorted on the STEM index. SIZE is the natural logarithm of 

market value of equity at the fiscal year-end. ASSET is the natural logarithm of total assets. SALE is the natural logarithm of net sales. FINLEV is 

the ratio of total debt to the sum of total debt and market value of equity. MB is the ratio of market to book value of equity. ROA is the ratio of 

income before extraordinary items to total assets. RD is the ratio of R&D expense to total assets. CAPEX is the ratio of capital expenditure less the 

sale of property, plants, and equipment, divided by total assets. BSEG is the natural logarithm of the firm’s number of business segments. SALEHHI 

is the Herfindahl-Hirschman index of the firm’s segment sales. BETA is market beta from the CAPM model, estimated using at least 24 and up to 

60 months of past return data. All firm-level variables are winsorized at the 0.5% and 99.5% levels. The sample covers the period from 1997 to 

2018. 
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Table 4 

Reliance on STEM Workers and Wage Sensitivity 

  Dependent Variable: ΔWAGE 

  All  ΔSALE>0  ΔSALE<0 

  (1) (2)  (3)  (4) 

Panel A: US Sample 

ΔSALE  0.398*** 0.440***  0.432***  0.356*** 

  (7.579) (9.367)  (7.790)  (6.923) 

STEM   0.026***  0.032***  0.004 

   (3.475)  (2.909)  (0.354) 

ΔSALE×STEM   -0.113**  -0.135**  -0.139*** 

   (-2.501)  (-2.343)  (-2.894) 

        

Year FE  Y Y  Y  Y 

Sector FE  Y Y  Y  Y 

Country FE  N N  N  N 

Obs.  2,847 2,847  2,175  671 

Adj. R2  0.324 0.343  0.293  0.240 

Panel B: G6 Sample 

ΔSALE  0.594*** 0.611***  0.583***  0.446*** 

  (15.804) (16.389)  (10.983)  (6.505) 

STEM   0.012  0.015  -0.001 

   (1.524)  (0.839)  (-0.046) 

ΔSALE×STEM   -0.115***  -0.136**  -0.156** 

   (-3.101)  (-2.262)  (-2.065) 

        

Year FE  Y Y  Y  Y 

Sector FE  Y Y  Y  Y 

Country FE  Y Y  Y  Y 

Obs.  17,805 17,805  11,183  6,622 

Adj. R2  0.112 0.112  0.116  0.088 

Panel C: European Sample 

ΔSALE  0.582*** 0.598***  0.544***  0.518*** 

  (20.297) (20.884)  (13.549)  (9.541) 

STEM   0.017***  0.003  0.008 

   (2.706)  (0.250)  (0.436) 

ΔSALE×STEM   -0.094***  -0.063  -0.184*** 

   (-3.300)  (-1.408)  (-3.042) 

        

Year FE  Y Y  Y  Y 

Sector FE  Y Y  Y  Y 

Country FE  Y Y  Y  Y 

Obs.  27,369 27,369  17,120  10,249 

Adj. R2  0.103 0.103  0.106  0.072 

The table reports the results of wage sensitivity regression for US firms (panel A), G6 firms (panel B), 

and European firms (panel C). The dependent variable is the log change in annual wage costs. The 

independent variables are the log change in annual sales, the standardized STEM index, and their 

interaction term. ΔWAGE, ΔSALE, and ΔSALE×STEM are winsorized at the 0.5% and 99.5% levels. 

The t-statistics (in parentheses) are calculated based on robust standard errors clustered by firm. *, **, 

and *** indicate statistical significance at the 10%, 5%, and 1% levels. 
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Table 5 

Reliance on STEM Workers and Profit Sensitivity 

  Dependent Variable: ΔPROFIT 

  All  ΔSALE>0  ΔSALE<0 

  (1) (2)  (3)  (4) 

Panel A: US Sample 

ΔSALE  1.643*** 1.642***  1.369***  1.674*** 

  (58.147) (57.797)  (42.994)  (18.932) 

STEM   -0.024***  -0.003  -0.046*** 

   (-5.370)  (-0.465)  (-3.361) 

ΔSALE×STEM   0.116***  0.062*  0.186* 

   (4.066)  (1.926)  (1.902) 

        

Year FE  Y Y  Y  Y 

Sector FE  Y Y  Y  Y 

Country FE  N N  N  N 

Obs.  32,296 32,296  24,689  7,606 

Adj. R2  0.230 0.231  0.160  0.111 

Panel B: G6 Sample 

ΔSALE  1.643*** 1.641***  1.438***  1.914*** 

  (75.301) (75.048)  (51.045)  (32.026) 

STEM   -0.005**  0.002  0.003 

   (-2.055)  (0.316)  (0.379) 

ΔSALE×STEM   0.064***  0.056**  0.163*** 

   (3.207)  (1.975)  (2.617) 

        

Year FE  Y Y  Y  Y 

Sector FE  Y Y  Y  Y 

Country FE  Y Y  Y  Y 

Obs.  57,126 57,126  35,420  21,706 

Adj. R2  0.218 0.219  0.141  0.131 

Panel C: European Sample 

ΔSALE  1.361*** 1.360***  1.220***  1.432*** 

  (47.741) (47.814)  (32.409)  (19.814) 

STEM   -0.003  0.003  0.005 

   (-0.788)  (0.425)  (0.489) 

ΔSALE×STEM   0.098***  0.081**  0.234*** 

   (3.695)  (2.299)  (2.879) 

        

Year FE  Y Y  Y  Y 

Sector FE  Y Y  Y  Y 

Country FE  Y Y  Y  Y 

Obs.  27,229 27,229  17,865  9,364 

Adj. R2  0.184 0.185  0.120  0.099 

The table reports the results of profit sensitivity regression for US firms (panel A), G6 firms (panel B), 

and European firms (panel C). The dependent variable is the log change in annual operating profits. The 

independent variables are the log change in annual sales, the standardized STEM index, and their 

interaction term. ΔPROFIT, ΔSALE, and ΔSALE×STEM are winsorized at the 0.5% and 99.5% levels. 

The t-statistics (in parentheses) are calculated based on robust standard errors clustered by firms. *, **, 

and *** indicate statistical significance at the 10%, 5%, and 1% levels. 
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Table 6 

Reliance on STEM Workers and Systematic Risk 

 Dependent Variable: BETA 

 US G6 Europe 

STEM 0.167*** 0.098*** 0.097*** 

 (4.942) (4.496) (4.786) 

SIZE 0.025** 0.038*** 0.057*** 

 (2.049) (5.233) (7.434) 

FINLEV 0.151** 0.342*** 0.288*** 

 (2.488) (10.730) (7.520) 

MB -0.005*** 0.007*** -0.004* 

 (-2.860) (2.659) (-1.930) 

ROA -0.654*** -0.646*** -0.479*** 

 (-7.158) (-9.567) (-9.718) 

RD 0.413** 0.448* 0.439** 

 (2.447) (1.661) (2.429) 

RDMISSING -0.094** -0.035* -0.061*** 

 (-2.498) (-1.680) (-2.680) 

CAPEX 0.133 -0.609*** -0.204 

 (0.738) (-4.534) (-1.382) 

BSEG -0.053*   

 (-1.854)   

SALEHHI -0.026   

 (-0.403)   

Constant 0.882*** 0.812*** 0.265** 

 (7.930) (10.548) (2.568) 

    

Year FE Y Y Y 

Sector FE Y Y Y 

Country FE N Y Y 

Obs. 46,977 72,802 35,608 

Adj. R2 0.175 0.225 0.196 

The table reports the results of systematic risk regression for US firms (panel A), G6 firms (panel B), 

and European firms (panel C). The dependent variable is market beta from the CAPM model, estimated 

using at least 24 and up to 60 months of past return data. STEM is the standardized STEM index. SIZE 

is the natural logarithm of market value of equity at the fiscal year-end. FINLEV is the ratio of total 

debt to the sum of total debt and market value of equity. MB is the ratio of market to book value of 

equity. ROA is the ratio of income before extraordinary items to total assets. RD is the ratio of R&D 

expense to total assets. RDMISSING is a dummy variable equal to 1 if R&D expense is missing, and 0 

otherwise. CAPEX is capital expenditure less the sale of property, plants, and equipment, divided by 

total assets. BSEG is the natural logarithm of the firm’s number of business segments. SALEHHI is the 

Herfindahl-Hirschman index of the firm’s segment sales. All firm-level variables except BSEG and 

SALEHHI are winsorized at the 0.5% and 99.5% levels. The t-statistics (in parentheses) are calculated 

based on robust standard errors clustered at the four-digit NAICS industry level. *, **, and *** indicate 

statistical significance at the 10%, 5%, and 1% levels. 
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Table 7 

Reliance on STEM Workers and Realized Returns 

  Dependent Variable: RETURN 

  US G6 Europe 

STEM  0.019*** 0.010*** 0.013*** 

  (4.093) (2.791) (3.024) 

SIZE  -0.013*** -0.008*** -0.000 

  (-8.712) (-6.348) (-0.066) 

FINLEV  0.065*** 0.039*** 0.027 

  (3.605) (3.596) (1.454) 

MB  -0.001* -0.007*** -0.004*** 

  (-1.945) (-6.494) (-4.395) 

BETA  0.007 -0.012 -0.002 

  (1.529) (-1.546) (-0.220) 

LAGRET  -0.052*** -0.019*** 0.029*** 

  (-7.849) (-3.672) (3.762) 

Constant  0.170*** -0.122*** 0.076* 

  (7.535) (-4.963) (1.925) 

     

Year FE  Y Y Y 

Sector FE  Y Y Y 

Country FE  N Y Y 

Obs.  41,551 67,951 32,039 

Adj. R2  0.068 0.097 0.147 

The table reports the results of return predictability regression for US firms (panel A), G6 firms (panel 

B), and European firms (panel C). The dependent variable is the realized annual return estimated from 

July in year t+1 to June in year t+2. STEM is the standardized STEM index. SIZE is the natural logarithm 

of market value of equity at the fiscal year-end. FINLEV is the ratio of total debt to the sum of total debt 

and market value of equity. MB is the ratio of market-to-book value of equity. BETA is market beta 

from the CAPM model, estimated using at least 24 and up to 60 months of past return data. LAGRET is 

the lagged 11-month return from July in year t to May in year t+1. All firm-level variables are 

winsorized at the 0.5% and 99.5% levels. The t-statistics (in parentheses) are calculated based on robust 

standard errors clustered at the four-digit NAICS industry level. *, **, and *** indicate statistical 

significance at the 10%, 5%, and 1% levels. 
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Table 8 

Industry-Level Regressions 

 
Dependent Variable: 

INDBETA 
  

Dependent Variable: 

INDRETURN 

 US G6 Europe   US G6 Europe 

STEM 0.050* 0.060*** 0.063***  STEM 0.022*** 0.012*** 0.020** 

 (1.832) (4.009) (3.201)   (4.200) (2.632) (2.093) 

INDSIZE 0.043** 0.055*** 0.066***  INDSIZE -0.010** -0.006*** 0.002 

 (2.132) (7.093) (7.829)   (-2.080) (-2.812) (0.329) 

INDFINLEV 0.237** 0.292*** 0.319***  INDFINLEV 0.145*** 0.028 0.080* 

 (1.994) (6.153) (5.682)   (3.407) (1.603) (1.871) 

INDMB -0.015** -0.000 -0.006  INDMB 0.001 -0.004* -0.006** 

 (-2.094) (-0.002) (-1.406)   (0.462) (-1.922) (-2.192) 

INDROA -1.438*** -0.803*** -0.644***  INDBETA -0.007 -0.004 -0.008 

 (-5.600) (-6.413) (-4.784)   (-0.573) (-0.443) (-0.177) 

INDRD 1.458 1.600** 1.537**  INDLAGRET 0.011 0.024** 0.050** 

 (1.445) (2.434) (2.272)   (0.529) (2.018) (2.566) 

INDCAPEX -0.045 -0.655*** -0.096      

 (-0.104) (-2.971) (-0.395)      

INDBSEG -0.092        

 (-1.052)        

INDSALEHHI -0.150        

 (-0.678)        

Constant 0.783*** 0.637*** 0.181*  Constant 0.095*** -0.031 0.081 

 (3.002) (9.518) (1.797)   (3.085) (-1.013) (0.916) 

         

Year FE Y Y Y  Year FE Y Y Y 

Sector FE Y Y Y  Sector FE Y Y Y 

Country FE N Y Y  Country FE N Y Y 

Obs. 3,901 13,553 14,429  Obs. 3,737 12,925 13,434 

Adj. R2 0.285 0.231 0.224  Adj. R2 0.183 0.160 0.123 

The table reports the results of systematic risk regression in table 6 and return predictability regression 

in table 7, estimated at the industry level. All firm-level variables (BETA, RETURN, SIZE, FINLEV, 

MB, ROA, RD, CAPEX, BSEG, SALEHHI, and LAGRET) are averaged over firms in each four-digit 

NAICS industry in a given year. The t-statistics (in parentheses) are calculated based on robust standard 

errors clustered at the four-digit NAICS industry level. *, **, and *** indicate statistical significance 

at the 10%, 5%, and 1% levels. 
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Table 9 

Reliance on STEM Workers and Labour-Related Operating Leverage 

STEM Portfolio 1 2 3 4 5 5 – 1 [t] 

10-year rolling window 

LOPLEV_SHIP 0.768 0.682 0.625 0.607 0.603 -0.164*** -8.037 

LOPLEV _TFP4 1.133 0.941 0.984 0.636 0.419 -0.714*** -8.103 

LOPLEV _TFP5 1.131 0.941 0.982 0.634 0.419 -0.711*** -8.019 

20-year rolling window 

LOPLEV_SHIP 0.818 0.748 0.692 0.656 0.669 -0.149*** -7.509 

LOPLEV _TFP4 1.486 1.184 1.415 0.892 0.466 -1.020*** -13.898 

LOPLEV _TFP5 1.482 1.182 1.414 0.892 0.466 -1.016*** -13.948 

30-year rolling window 

LOPLEV_SHIP 0.837 0.811 0.768 0.733 0.736 -0.101*** -6.022 

LOPLEV _TFP4 1.804 1.535 1.344 1.002 0.664 -1.140*** -9.064 

LOPLEV _TFP5 1.798 1.527 1.341 1.000 0.658 -1.139*** -9.098 

40-year rolling window 

LOPLEV_SHIP 0.831 0.822 0.814 0.792 0.772 -0.059*** -6.791 

LOPLEV _TFP4 2.109 1.923 1.575 1.131 0.931 -1.178*** -6.612 

LOPLEV _TFP5 2.108 1.918 1.576 1.138 0.933 -1.175*** -6.503 

This table reports the time-series averages of mean labour-related operating leverage for five portfolios 

of detailed manufacturing industries sorted on STEM index. The last two columns show the t-test results 

of mean differences between extreme portfolios. Labour-related operating leverage is defined as the 

slope coefficient from a time-series regression in which the natural logarithm of total payroll costs are 

regressed on the natural logarithm of shipment value (LDOL_SHIP) or total factor productivity 

(LDOL_TFP4 or LDOL_TFP5) over a 10-year, 20-year, 30-year, or 40-year rolling window. *, **, and 

*** indicate statistical significance at the 10%, 5%, and 1% levels. 
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Table 10 

Additional Control Variables 

 Dependent Variable: BETA  Dependent Variable: RETURN 

 (1) (2) (3)  (4) (5) (6) 

STEM 0.171*** 0.180*** 0.174***  0.020*** 0.021*** 0.016** 

 (5.197) (5.354) (5.088)  (4.056) (3.497) (2.311) 

INDAGE -0.094* -0.094* -0.092*  0.012 0.008 0.009 

 (-1.893) (-1.925) (-1.766)  (1.232) (0.896) (0.936) 

INDKL 0.038 0.036 0.036  -0.033* -0.035* -0.033* 

 (0.785) (0.773) (0.778)  (-1.804) (-1.756) (-1.655) 

INDATGR  -0.523*** -0.495***   -0.330*** -0.321*** 

  (-2.910) (-2.810)   (-3.046) (-2.814) 

INDROA  0.248 0.263   -0.080*** -0.089*** 

  (1.225) (1.129)   (-3.301) (-3.318) 

INDCONC   -0.130    -0.017 

   (-0.714)    (-0.560) 

UNION   -0.003    -0.001 

   (-1.200)    (-1.404) 

MOBILE   0.013    0.003* 

   (1.169)    (1.789) 

Constant 1.272*** 1.302*** 1.201***  0.119** 0.166*** 0.151*** 

 (5.114) (5.411) (5.335)  (2.474) (3.309) (2.968) 

        

Controls Y Y Y  Y Y Y 

Year FE Y Y Y  Y Y Y 

Sector FE Y Y Y  Y Y Y 

Obs. 46,977 46,977 45,848  41,551 41,551 40,549 

Adj. R2 0.177 0.180 0.184  0.069 0.071 0.072 

The table reports the US results of systematic risk regression in table 6 and return predictability 

regression in table 7, controlling for additional industry characteristics. These include the log age of the 

oldest firm in the industry (INDAGE), the industry median capital-to-labour ratio (INDKL), the industry 

median asset growth rate (INDATGR), the industry median return on assets (INDROA), the Herfindahl-

Hirschman index of industry sales concentration (INDCONC), the percentage of unionized workers in 

the industry (UNION), and the degree of mobility of an industry’s workforce (MOBILE). All industry-

level variables are defined at the four-digit NAICS industry level except UNION, which is defined at 

the three-digit CIC industry level. All regressions include year and sector fixed effects. The t-statistics 

(in parentheses) are calculated based on robust standard errors clustered at the four-digit NAICS 

industry level. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels. 
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Table 11 

Subsample Analysis of Wage and Profit Sensitivity 

  R&D Stock  Patent  Labour Competition  Contingent Labour 

  Low High  No Yes  Low High  <10% ≥10% 

Panel A: Wage Sensitivity Regression 

  Dependent Variable: ΔWAGE 

ΔSALE  0.589*** 0.317***  0.513*** 0.331***  0.557*** 0.442***  0.390*** 0.692*** 

  (10.050) (4.999)  (9.797) (3.288)  (8.852) (11.743)  (7.705) (12.815) 

STEM  0.018** 0.034*  0.019** 0.032**  -0.001 0.050***  0.034*** 0.009 

  (2.333) (1.847)  (2.556) (2.248)  (-0.089) (3.783)  (3.572) (1.158) 

ΔSALE×STEM  0.044 -0.257***  -0.042 -0.219**  0.099** -0.322***  -0.181*** -0.024 

  (1.065) (-3.757)  (-0.924) (-2.084)  (2.099) (-6.887)  (-3.356) (-0.684) 

Constant  0.092*** 0.032  0.097*** 0.091***  0.112*** 0.056***  0.109*** 0.057*** 

  (4.785) (0.837)  (5.330) (2.820)  (4.263) (3.184)  (5.105) (3.265) 

             

Year FE  Y Y  Y Y  Y Y  Y Y 

Sector FE  Y Y  Y Y  Y Y  Y Y 

Obs.  2,340 441  2,376 471  1,505 1,342  1,841 1,006 

Adj. R2  0.524 0.114  0.433 0.117  0.522 0.340  0.301 0.583 

Panel B: Profit Sensitivity Regression 

  Dependent Variable: ΔPROFIT 

ΔSALE  1.453*** 1.854***  1.536*** 1.806***  1.637*** 1.603***  1.642*** 1.631*** 

  (34.383) (39.659)  (45.659) (33.509)  (40.132) (38.976)  (51.661) (27.130) 

STEM  -0.001 -0.032***  -0.013** -0.045***  -0.018*** -0.033***  -0.027*** -0.012 

  (-0.117) (-4.878)  (-2.188) (-6.165)  (-2.656) (-4.576)  (-5.244) (-1.240) 

ΔSALE×STEM  -0.038 0.092**  0.024 0.216***  0.046 0.187***  0.131*** 0.067 

  (-0.845) (2.043)  (0.709) (4.104)  (1.041) (4.768)  (4.037) (1.166) 

Constant  -0.064*** -0.083*  -0.092*** -0.060  -0.125*** -0.112***  -0.114*** -0.086** 

  (-2.613) (-1.948)  (-3.903) (-1.457)  (-3.336) (-4.191)  (-4.109) (-2.139) 

             

Year FE  Y Y  Y Y  Y Y  Y Y 

Sector FE  Y Y  Y Y  Y Y  Y Y 

Obs.  17,111 14,630  21,361 10,935  16,411 15,885  25,395 6,901 

Adj. R2  0.203 0.260  0.210 0.278  0.225 0.237  0.243 0.184 
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The table repeats the wage sensitivity regression in table 4, and the profit sensitivity regression in table 5, for US firms divided into four pairs of 

subsamples. All model variables are as previously defined. The partitioning variables include: first, the stock of R&D capital which is the five-year 

accumulated R&D expenses; second, an indicator variable for whether the firm applied for a patent during the previous three years; third, the degree 

of labour market competition, defined as one minus a Herfindahl-Hirschman index of employee concentration in the firm’s industry; and fourth, 

reliance on contingent workers, defined as whether the firm employs at least 10 percent of its workforce on part-time or seasonal contracts. All 

regressions include year and sector fixed effects. The t-statistics (in parentheses) are calculated based on robust standard errors clustered at the four-

digit NAICS industry level. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels.
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Table 12 

Subsample Analysis of Relationship between STEM Index and Equity Risk 

  R&D Stock  Patent  Labour Competition  Contingent Labour 

  Low High  No Yes  Low High  <10% ≥10% 

Panel A: Systematic Risk Regression 

  Dependent Variable: BETA 

STEM  0.062* 0.201***  0.116*** 0.247***  0.125*** 0.225***  0.188*** 0.063 

  (1.951) (3.662)  (4.772) (3.773)  (3.469) (2.978)  (5.438) (1.396) 

             

Controls  Y Y  Y Y  Y Y  Y Y 

Year FE  Y Y  Y Y  Y Y  Y Y 

Sector FE  Y Y  Y Y  Y Y  Y Y 

Obs.  22,936 22,922  29,901 17,076  24,311 22,666  37,505 9,472 

Adj. R2  0.182 0.154  0.170 0.181  0.139 0.218  0.198 0.095 

Panel B: Return Predictability Regression 

  Dependent Variable: RETURN 

STEM  0.004 0.017**  0.016*** 0.019**  0.023*** 0.032***  0.018*** 0.018*** 

  (0.519) (2.310)  (2.719) (2.367)  (3.765) (3.144)  (3.729) (2.812) 

             

Controls  Y Y  Y Y  Y Y  Y Y 

Year FE  Y Y  Y Y  Y Y  Y Y 

Sector FE  Y Y  Y Y  Y Y  Y Y 

Obs.  20,280 20,253  25,228 16,323  21,418 20,133  33,133 8,418 

Adj. R2  0.085 0.086  0.065 0.099  0.074 0.084  0.072 0.060 

The table repeats the systematic risk regression in table 6, and the return predictability regression in table 7, for US firms divided into four pairs of subsamples. 

All model variables are as previously defined. The partitioning variables include: first, the stock of R&D capital which is the five-year accumulated R&D 

expenses; second, an indicator variable for whether the firm applied for a patent during the previous three years; third, the degree of labour market competition, 

defined as one minus a Herfindahl-Hirschman index of employee concentration in the firm’s industry; and fourth, reliance on contingent workers, defined as 

whether the firm employs at least 10 percent of its workforce on part-time or seasonal contracts. Coefficients on the control variables are omitted for brevity. 

All regressions include year and sector fixed effects. The t-statistics (in parentheses) are calculated based on robust standard errors clustered at the four-digit 

NAICS industry level. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels. 


